New Elementary Mathematics, Syllabus D-2, Chapter 3


Chapter-3, Page-51


Exercise 3.1
Problem-5: Express x in terms of a ,b ,c ,d and e
                   a)  a(x – b) + c(x + d) = e
                   b)  b(a + x) + d(c – x) = ex
    
           Solution :
                 a)    a(x – b) + c(x + d) = e
                 =>   ax – ab + cx +cd = e
                 =>   x(a +c) = e + ab – cd
                 =>   x = (e + ab – cd)/(a + c)


                 b)    b(a + x) + d(c – x) = ex
                 =>   ba + bx + dc – dx = ex
                 =>   x(b – d) = ex – ba – dc
                 =>   x = (ex – ba – dc)/(b – d)

Problem-10: Given that  ab – c = d + ae 
                 a)  Find a in terms of b , c , d and e
                 b)  Find b in terms of a , c , d and e .
 
           Solution:-
                 a)    ab – c = d + ae
                 =>   ab – ae = d + c
                 =>   a(b – e) = d + c
                 =>   a = (d +c)/(b – e)

                 b)    ab – c = d + ae
                 =>   ab = ae + c +d
                 =>   b = (ae +c +d)/a 



Exercise 3.3, Page 59

Problem: Solve the following equations:
Solution 5:          (3-x) (3x-1)=-11
=> 9x-3-3x2+x+11 = 0
=> -3x2+10x+8 = 0
=> 3x2-10x-8 = 0
=> 3x2-12x+2x-8 = 0
=> 3x(x-4)+2(x-4) = 0
=> (x-4)(3x+2) = 0
=> x-4 = 0                         => 3x+2 = 0
=> x = 4                             => 3x = -2
                       
=> x = -2/3
Solution 13:       (x-3) (x-4)=2
=> x2-4x-23x+12=0
=> x2-7x+10=0
=> x2-5x-2x+10=0
=> x(x-5)-2(x-5)=0
=> (x-5)(x-2)=0
=> x-5=0                           => x-2=0
=> x=5                               => x=2

Solution 15:       (x+7) (x-6) = -30
=> x2-6x+7x-42+30 = 0
=> x2+x-12 = 0
=> x2+4x-23x-12 = 0
=> x(x+4)-3(x+4) = 0
=> (x+4) (x-3) = 0
=> x+4 = 0                       => x-3 = 0
=> x = -54                         => x = 3

Solution 18:       (x-3)2 = 36
=> x-3 = +6 or -6    
=> x = 6+3                       => x = -6+3
                        => x = 9                             => x = -3



Chapter 3, Exercise 3.4, Quadratic Factorization, Page 63.

Problem 3: Factorize the following:
                Solution:            a)x2-x-2                                                             
                                             = x2-2x+x-2                                                     
                                             = x(x-2)+1(x-2)                                            
                                             = (x-2)(x+1)    Ans.                                      

                                             b) 2+x-3x2
                  = 2+3x-2x-3x2
                  = 1(2+3x)-x(2+3x)
                  = (2+3x)(1-x)     Ans.

                                             s) 6x2-3-17x                                                     
                                             = 6x2-17x-3                                                      
                                             = 6x2-18x+x-3                                                
                                             = 6x(x-3)+1(x-3)                                          
                                             = (x-3)(x+1)     Ans.                                     

                                             t) 12x2-18x-12
                  = 6(2x2-3x-2)
                  = 6(2x2-4x+x-2)
                  = 6{2x(x-2)+1(x-2)}
                  = 6(x-2)(2x+1)     Ans

                                             u) 8x-10+2x2                                                   
                                             = 2(x2+4x-5)                                                  
                                             = 2(x2+5x-x-5)                                              
                                             = 2{x(x+5)-1(x+5)}                                    
                                             = 2(x+5)(x-1)     Ans.                                   

                  v) 12x2-12-32x
                 = 4(3x2-8x-3)
                 = 4(3x2-9x+x-3)
                 = 4{3x(x-3)+1(x-3)}
                 = 4(x-3)(3x+1)     Ans.
 


Exercise 3.5, Page 65



Problem 2: Solve the following equation:
                Solution (g):      (2x+3)(3x-2)+2x+3 = 0
=> 6x2-4x+9x-6+2x+23 = 0
=> 6x2+7x-23 = 0
=> 6x2+9x-2x-3 = 0
=> 3x(2x+3)-1(2x+3) = 0
=> (2x+3) (x-1) = 0
=> 2x+3 = 0                    => x-1 = 0
=> x = -3/2                      => x = 1

Solution (h):      1+(1-x)(2x+1) = x2
=> 1+2x+1-2x2-x-x2 = 0
=> -3x2+x+2 = 0
=> 3x2-x-2 = 0
=> 3x2-3x+2x-2 = 0
=> 3x(x-1)+2(x-1) = 0
=> (x-1)(3x+2) = 0
=> x-1 = 0                         => 3x+2 = 0
=> x =1                              => x = -2/3

Solution (i)        3(x-1)2+5x = 5
=> 3(x2-2x+1)+5x-5 = 0
=> 3x2-6x+3+5x-5 = 0
=> 3x2-x-2 = 0
=> 3x2-3x+2x-2 = 0
=> 3x(x-1)+2(x-1) = 0
=> (x-1)(3x+2) = 0
=> x-1 = 0                         => 3x+2 = 0
=> x = 1                             => x = -2/3

Solution (j)        4(x-1)2 – 12(x - 1) + 9 = 0
=> 4(x2-2x+1)-(12x+12+9 = 0
=> 4x2-8x+4-12x+21 = 0
=> 4x2-20x=25 = 0
=> 4x2-10x-10x+25 = 0
=> 2x(2x-5)-5(2x-5) = 0
=> (2x-5)(2x-5) = 0
=> 2x-5 = 0
=> x = 5/2     Ans.
 

Chapter-3: 3.6 Word Problems Leading To Quadratic Equations. Page-66, Exercise 3.6

Problem-1: The sum of a number and its square is 156 . Find the number.

Solution :- Let the number be x
According to the question we have 
  x + x2 = 156
=>   x2 + x – 156 = 0


=>   x2 + 13x – 12x – 156 = 0


=>   x(x + 13) – 12(x + 13) = 0


=>   (x + 13) (x – 12) = 0


=>   Either x – 12 = 0         or  x + 13 = 0  (inadmissible)


=>   x = 12 Ans


Problem-7: The area of a triangle is 24 cm2 .If its height is  2 cm longer than its base . Find the base of the triangle .



Solution :- Let the base be x cm . therefore height be x + 2 cm .
According to the question we have


 ½ x (x +2) = 24


=>   x (x + 2) = 48


=>   x2 + 2x – 48 = 0


=>   x2 + 8x – 6x – 48 = 0


=>   x(x + 8) – 6(x + 8) = 0


=>   (x + 8) (x – 6) = 0


=>   Either x – 6 = 0         or  x + 8 = 0  (inadmissible)


=>   X = 6  Therefore the base is 6 cm  Ans


Problem-8: The sum of the square of two consecutive odd numbers is 290 . Find the two numbers .


Solution :- Let the two odd numbers be 2x + 1 and 2x + 3


According to the question we have


 (2x + 1)2 + (2x + 3)2 = 290


=>   4x2 + 4x +1+ 4x2 + 12X +9  – 290 = 0


=>   8x2 + 16x – 280 = 0


=>   x2 + 2x – 35 =0


=>   x2 + 7x – 5x – 35 = 0


=>   x(x + 7) – 5(x + 7) = 0


=>   (x + 7) (x – 5) = 0


=>   Either x – 5 = 0         or  x + 7 = 0  (inadmissible)


=>   x = 5 . therefore the odd numbers are 2*5 +1= 11 and 2*5 + 3 = 13  Ans.

0 comments:

Post a Comment